师资队伍

教师名录

程正顺

船舶与海洋工程系

电子邮件:zhengshun.cheng@sjtu.edu.cn
通讯地址:上海市东川路800号木兰船建大楼B805A
个人主页:https://faculty.sjtu.edu.cn/chengzhengshun

1987年生,博士,副教授,博士生导师

教育背景:
2013.06-2016.06 挪威科技大学 海洋工程 博士
2010.09-2013.03 澳门新葡平台网址8883 船舶与海洋工程 硕士
2006.09-2010.07 澳门新葡平台网址8883 船舶与海洋工程 本科

工作经历:
2019.05-至今 澳门新葡平台网址8883 船舶与海洋工程系 长聘教轨副教授,博士生导师
2016.06-2019.04 挪威科技大学 海洋工程系 博士后
2015.08-2015.10 丹麦技术大学 风能系 访问学者

  1. 海洋结构物动力耦合与安全分析,包括多物理场耦合动力分析、随机动力分析、可靠性与不确定性评估等

  2. 海上风机技术,包括基础设计、非定常气动载荷、非线性水动力载荷、控制设计、一体化全耦合分析、漂浮式风机新概念等

  3. 新型海洋结构物设计与分析(超大型浮桥、深远海养殖装备等),包括海洋环境评估与建模、耦合动力响应分析、极值响应及不确定性评估等

  • 国家自然科学基金同行评审专家

  • 教育部学位与研究生教育发展中心论文评审专家

  • 国际SCI期刊Frontiers in Energy Research副主编(2021-现在)

  • 国际SCI期刊Shock and vibration客座编辑(2021)

  • Advances in Bridge Engineering客座编辑(2020)

  • 20多份国际SCI期刊审稿人,包括海洋工程类期刊(Marine Structures, Ocean Engineering, Engineering Structures, Applied Ocean Research等)和海洋可再生能源类期刊(Renewable Energy, Applied Energy, Wind Energy, Energy等)

[1] 国家自然科学基金面上项目,42176210,变桨控制的浮式垂直轴风机耦合数值方法与虚拟混合模型实验研究,2022-012025-12,在研,项目负责人

[2] 澳门新葡平台网址8883,长聘教轨副教授科研启动项目,2019-05至2022-06,在研,项目负责人

[3] 三亚崖州湾科技城管理局重点项目,SKJC-2020-01-005,浮式基础平台风机关键技术研究,2020-09至2023-08,在研,交大项目负责人

[4] 海洋工程国家重点实验室,自主研究课题项目,GKZD010075,时空非均匀环境作用下超大型浮体动力响应特性研究, 2019-05至2020-03,已结题,项目负责人

[5]  水利工程仿真与安全国家重点实验室,开发课题,HESS-1710,浮式垂直轴风力机动力响应特性研究,2017-05至2020-05,已结题,项目负责人

[6]  国际科研合作项目,Offloading analysis of FPSO and shuttle tanker,2021-8-2021-10,已结题,项目负责人

[7]  挪威公共道路管理局,Characteristic environmental loads and load effects for ULS and ALS design check of floating bridges,2016-06至2019-12,经费831万挪威克朗,已结题,参加,技术负责人

[8]  欧盟第七框架计划和挪威基金委联合资助项目,MAREWINT, Dynamic modelling and analysis of a floating wind turbine concept, and comparison with laboratory test data or field measurements,2012-10至2016-09,经费250万挪威克朗,已结题,参加,技术负责人


ResearchGate 主页: https://www.researchgate.net/profile/Zhengshun_Cheng

Google Scholar主页: https://scholar.google.com/citations?user=UcyFd6EAAAAJ&hl=en


外文期刊论文(* corresponding author)
海洋可再生能源(主要为海上风机)

  1. Yang C, Cheng Z*, Xiao L, Tian X, Liu M, Wen B. A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins. Renewable Energy, 2022, 187:144-155

  2. Yu Z*, Amdahl J, Rypestøl M, Cheng Z. Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads. Renewable Energy, 2022, 184:677-699

  3. Li X, Wei H*, Xiao L, Cheng Z, Liu M. Study on the effects of mooring system stiffness on air gap response. Ocean Engineering, 2021, 239:10979

  4. Cao Q, Xiao L*, Cheng Z, Liu M. Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison. Ocean Engineering, 2021, 232: 109138

  5. Cao Q, Xiao L*, Cheng Z, Liu M, Wen B. Operational and extreme responses of a new concept of 10MW semi-submersible wind turbine in intermediate water depth: An experimental study. Ocean Engineering, 2020, 217:10800

  6. Cheng Z*, Madsen HA, Gao Z, Moan T. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renewable Energy, 2017, 107: 604-619.

  7. Cheng Z*, Madsen HA, Chai W, Gao Z, Moan T. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines. Renewable Energy, 2017, 108:207-219.

  8. Cheng Z*, Madsen HA, Gao Z, Moan T. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renewable Energy, 2017, 101:1285-1298.

  9. Cheng Z*, Wang K, Gao Z, Moan T. A comparative study on dynamic responses of spar-type floating horizontal and vertical axis wind turbines. Wind Energy, 2017, 20(2):305-323.

  10. Cheng Z, Wen TR, Ong MC, Wang K*. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept. Energy, 2019, 171: 190-204

  11. Zhao Y*, Cheng Z, Gao Z, Sandvik PC, Moan T. Numerical study on the feasibility of offshore single blade installation by floating crane vessels. Marine Structures, 2019, 64: 442-462

  12. Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T, Buren, EV. Numerical modeling and analysis of the dynamic motion response of an offshore wind turbine blade during installation by a jack-up crane vessel. Ocean Engineering, 2018, 165:353-364.

  13. Zhao Y, Cheng Z*, Sandvik PC, Gao Z, Moan T. An integrated dynamic analysis method for simulating installation of single blades for wind turbines. Ocean Engineering, 2018, 152:72-88.

  14. Tu Y, Cheng Z*, Muskulus M. Global slamming forces on Jacket structures for offshore wind applications. Marine Structures, 2018, 58: 53-72.

  15. Cheng Z*, Wang K, Ong MC. Assessment of performance enhancement of a semi-submersible vertical axis wind turbine with an optimized Darrieus rotor. Engineering Structures, 2018, 167: 227-240.

  16. Li L, Cheng Z, Yuan Z*, Gao Y. Short-term extreme response and fatigue damage of an integrated wind, wave and tidal energy system. Renewable Energy, 2018, 126:617-629.

  17. Tu Y, Cheng Z*, Muskulus M. A global slamming force model on offshore wind Jacket structures. Marine Structures, 2018, 60:201-217.



超长浮桥

  1. Cui M, Cheng Z*, Moan T. A Generic Method for Assessment of Inhomogeneous Wave Load Effects of Very Long Floating Bridges. Marine Structures. 2022, 83:103186

  2. Cheng Z*, Svangstu E, Gao Z, Moan T. Assessment of inhomogeneity in environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2021, 220:108474

  3. Cheng Z*, Gao Z, Moan T. Extreme Responses and Associated Uncertainties for a Long End-Anchored Floating Bridge. Engineering Structures, 2020, 219, 110858

  4. Cheng Z*, Svangstu E, Gao Z, Moan T. Long-term joint distribution of environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2019, 191, 106472

  5. Cheng Z*, Gao Z, Moan T. Numerical modeling and dynamic response analysis of a floating bridge subjected to wind, wave and current loads. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141 (1): 011601

  6. Cheng Z*, Gao Z, Moan T. Hydrodynamic load modeling and analysis of a floating bridge inhomogeneous wave conditions. Marine Structures, 2018, 59: 122-141.

  7. Cheng Z*, Gao Z, Moan T. Wave load effect analysis of a floating bridge in a fjord considering inhomogeneous wave conditions. Engineering Structures, 2018, 163:197-214.

  8. Cheng Z*, Svangstu E, Gao Z, Moan T. Field measurements of inhomogeneous wave conditions in Bjørnafjorden. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(1):05018008


课程教学:

  1. 《海洋可再生能源》,授课对象:本科生

  2. 《Scientific Writing, Integrity and Ethics》,授课对象:研究生

  3. 《随机理论及其在海洋工程中的应用》,授课对象:研究生


研究生指导:

[1]  曹群,2018级博士,海上风机技术(协助指导)

[2]  杨灿,2019级硕士/2021级博士,海上风机技术(协助指导)

[3]  马悦源,2020级博士,海上风机技术

[4]  江莹莹,2020级博士,海上风机技术

[5]  崔明浩,2020级硕士/2022级博士,超大型浮桥

[6]  丁时空,2020级硕士,海上风机技术

[7]  许仕杰,2020级硕士,海上风机与海洋牧场

[8]  李昌恩,2021级博士,海上风机技术

[9]  邓诗翔,2021级博士,海上风机技术(协助指导)

[10] 王月,2021级硕士,海上风机技术

[11]  李沈杰,2021级硕士,海上风机技术

Moan-Faltinsen Best Paper Award, 2017
Marie Curie ITN fellowship, 2013

版权所有 © 2023 澳门新葡平台网址8883 - 澳门新莆京游戏大厅 沪交ICP备05053   流量统计

Baidu
sogou