师资队伍

教师名录

梁夫友

工程力学系

办公电话:34205120
电子邮件:fuyouliang@sjtu.edu.cn
通讯地址:上海市东川路800号木兰船建大楼B423

澳门新葡平台网址8883工程力学系教授、博士/硕士生导师,AO-SJTU生物力学联合实验室负责人,澳门新葡平台网址8883生物力学与医疗器械创新工作室责任教授;曾兼任美国莱特州立大学博士生导师,日本理化学研究所、莫斯科国立第一医科大学客座研究科学家。目前担任《医用生物力学》、《Journal of Hydrodynamics》、《Frontiers in Bioengineering and Biotechnology》编委,中国生物材料学会材料生物力学分会委员;曾多次担任国际/国内学术会议分会场主席、科学委员会委员以及国家自然科学基金、欧洲科学基金函评专家等;长期受邀为十余家国内外学术期刊审稿。主要从事心血管生物力学方面的研究工作,研究课题涉及人体血液循环系统的理论建模与计算机仿真、医工交叉/融合研究以及心血管功能无创检测新技术研发与产品转化(中心/外周血压、动脉硬化、微循环功能检测仪)等,已在国内外学术期刊及会议上发表论文七十余篇,论文总被引1260余次,2015-2018连续四年入选了“中国高被引学者”榜单。

2019.12-至今 澳门新葡平台网址8883,教授
2012.8-2019.12 澳门新葡平台网址8883,特别研究员/副教授
2007.4-2012.8 日本理化学研究所次世代计算科学研究课题组,研究科学家
2004.4-2007.3 日本国立千叶大学自然科学研究科,工学博士

(1)心血管生物力学建模与数值计算方法(基础理论研究)
(2)心血管疾病的计算机辅助诊断与治疗(医工交叉/融合研究)
(3)基于生物力学原理/人工智能的心血管检测技术研发与产品转化(产学医研结合研究)
Find more details of our research at: https://www.researchgate.net/profile/Fuyou_Liang
-----------------------------------------------------------------------------------------------------------------------------
*本实验室着重培养多学科交叉的复合型人才,欢迎有力学、机械工程、数学或生物医学工程教育背景的学生报考博士、硕士研究生,同时欢迎本科生依托本实验室开展兴趣驱动的科技创新或学术探索工作。
*实验室常年招收有相关科研背景的博士后,将根据我校有关政策为优秀博士后提供有竞争力的薪资待遇和职业发展机会。
*实验室与企业、三甲医院共建生物力学联合实验室,为锻炼学生的产学医研多学科、多领域交叉融合能力提供良好的平台。
*优秀博士生可推荐赴国外实验室访学。

2018.11-至今 中国生物材料学会材料生物力学分会 委员
2018.8-至今 《医用生物力学》 编委
2015.9-至今 《Frontiers in Bioengineering and Biotechnology》 编委
2016.3-至今 《Journal of Hydrodynamics》、《水动力学研究与进展》 编委
2020.2-至今 世界华人生物医学工程协会(WACBE) 终身会员
2014.8-至今 中国生物医学工程学会(CSBE) 高级会员
2010-至今 美国机械工程师学会(ASME) 会员
2010-至今 国际电气与电子工程师学会(IEEE) 会员
2005-2012 日本机械工程师学会(JSME) 正会员

主持国家自然科学基金项目3项,校企联合实验室项目1项,企业委托技术研发项目5项,合作主持上海市及澳门新葡平台网址8883医工交叉项目6项,参与国家级重点研究项目2项。

[1] X.D. Zhou, L.K. Yin, L.J. Xu, F.Y. Liang*. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: an in vivo measurement-based computational study. Journal of Biomechanics, 2020, 101:109617.
[2] X.Y. Ge, Y.J. Liu, Z.F. Yin, S.X. Tu, Y.Q. Fan, Y. Vassilevski, S. Simakov, F.Y. Liang*. Comparison of instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR) with respect to their sensitivities to cardiovascular factors: a computational model-based study. Journal of Interventional Cardiology, 2020 (In press).
[3] X.D. Zhou, F.Y. Liang*. Numerical study on low-density lipoprotein transport and deposition in the carotid artery and associated factors. Journal of Medical Biomechanics, 2020. (In Chinese, In press)
[4] Xu L, Wang H, Chen Y, Dai Y, Lin B, Liang F, Wan J, Yang Y, Zhao B. Morphological and hemodynamic factors associated with ruptured middle cerebral artery mirror aneurysms: a retrospective study. World Neurosurgery, 2020, DOI: 10.1016/j.wneu.2020.01.083(In press).
[5] Tu S, Westra J, Adjedj J, Ding D, Liang F, Xu B, Holm NR, Reiber JHC, Wijns W. Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. European Heart Journal. 2019. doi: 10.1093/eurheartj/ehz918 (In press).
[6] X.Y. Ge, Y.J. Liu, S.X. Tu, S. Simakov, Y. Vassilevski, F.Y. Liang*. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. International Journal for Numerical Methods in Biomedical Engineering, 2019 e3257.
[7] Carson JM, Pant S, Roobottom C, Alcock R, Javier Blanco P, Alberto Bulant C, Vassilevski Y, Simakov S, Gamilov T, Pryamonosov R, Liang F, Ge X, Liu Y, Nithiarasu P. Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35(10):e3235.
[8] L.J Xu, B. Zhao, X.S. Liu, F.Y. Liang*. Computational methods applied to analyze the hemodynamic effects of flow-diverter devices in the treatment of cerebral aneurysms: current status and future directions. Medicine in Novel Technology and Devices, 2019, 3:100018
[9] X.Y. Li, X.S. Liu, X. Li, L.J. Xu, X. Chen, F.Y. Liang*. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomechanics and Modeling in Mechanobiology, 2019, 18:883-896.
[10] L.J. Xu, L.K. Yin, Y.J. Liu, F.Y. Liang*. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta. Mathematical Biosciences and Engineering, 2019, 17(1): 606-626.
[11] Z.Q. Zhang, L.J. Xu, R. Liu, X.S. Liu, B. Zhao, F.Y. Liang*. Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm. Journal of Hydrodynamics, 2019. https://doi.org/10.1007/s42241-019-0038-9 (In press).
[12] J. Li, Z.F. Yin, F.Y. Liang*. Transient Hemodynamic Characteristics upon Balloon Deflation in Coronary Interventional Operation: In Vitro Experiment and Numerical Simulation. Journal of Medical Biomechanics, 2019, 34(5): 473-480 (In Chinese).
[13] Dobroserdova T., Liang F., Panasenko G., Vassilevski, Y. Multiscale models of blood flow in the compliant aortic bifurcation. Applied Mathematics Letters, 2019, 93:98-104.
[14] L.J. Xu, F.Y. Liang*, L.X. Gu, H. Liu*. Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery. Journal of Biomechanics, 2018, 72: 187-199.
[15] L.J. Xu, F.Y. Liang*, B. Zhao, H. Liu. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study. Computers in Biology and Medicine, 2018, 101: 51-60.
[16] X.Y. Ge, Z.F. Yin, Y.Q. Fan, Y. Vassilevski, F.Y. Liang*. A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34: e3123.
[17] T.Q. Wang, F.Y. Liang*, Z.Q. Zhou, X.L. Qi. Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation. Computers in Biology and Medicine, 2018, 97: 124-136.
[18] F.Y. Liang*, D.B. Guan, J. Alastruey. Determinant factors for arterial hemodynamics in hypertension: theoretical insights from a computational model-based study. Journal of Biomechanical Engineering, 2018, 140(3): 031006.
[19] X.J. Zhang, Y.P. Zhang, Z.F. Yin, K.R. Qin, F.Y. Liang*. Theoretical method and clinical experiments for estimating arterial stiffness based on upper-arm cuff oscillometric wave. China Medical Devices, 2018, 33(4): 22-28. (In Chinese)
[20] T.Q. Wang, F.Y. Liang*, Z.Q. Zhou, L. Shi. A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis. Journal of Biomechanics, 2017, 65: 23-31.
[21] F.Y. Liang*, X.S. Liu, R. Yamaguchi, H. Liu. Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network. Journal of Biomechanics, 2016, 49: 3731-3740.
[22] D.B. Guan, F.Y. Liang*, P. Gremaud. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. Journal of Biomechanics, 2016, 49(9): 1583-1592.
[23] Z.P. Deng, F.Y. Liang*. Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff: implications for noninvasive blood pressure measurement. Acta Mechanica Sinica, 2016, 32(5): 959-969.
[24] F.Y. Liang*, Z.F. Yin*, Y.Q. Fan, K. Chen, C.Q. Wang. In vivo validation of an oscillometric method for estimating central aortic pressure. International Journal of Cardiology, 2015, 199: 439-441.
[25] F.Y. Liang*, M. Oshima, H.X. Huang, H. Liu, S. Takagi. Numerical study of cerebroarterial hemodynamic changes following carotid artery operation: a comparison between multiscale modeling and stand-alone three-dimensional modeling. Journal of Biomechanical Engineering, 2015, 137(10): 101011.
[26] F.Y. Liang*, H. Senzaki, C. Kurishima, K. Sughimoto, R. Inuzuka, H. Liu. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. American Journal of Physiology-Heart and Circulatory Physiology, 2014, 307(7): H1056-H1072.
[27] F.Y. Liang*, K. Sughimoto, K. Matsuo, H. Liu, S. Takagi. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(10):1000-1018.
[28] F.Y. Liang*. Numerical validation of a suprasystolic brachial cuff-based method for estimating aortic pressure. Bio-medical Materials and Engineering, 2014, 24(1): 1053-1062.
[29] Z.P. Deng,C.G. Zhang,P. Yu,J. Shao,F.Y. Liang*. Estimation of left ventricular stroke volume based on pressure waves measured at the wrist: a method aimed at home-based use. Bio-medical Materials and Engineering, 2014, 24(6): 2909-2918.
[30] F.Y. Liang*, H. Senzaki, Z.F. Yin, Y.Q. Fan, K. Sughimoto, H. Liu. Transient hemodynamic changes upon changing a BCPA into a TCPC in staged Fontan operation: a computational model study. The Scientific World Journal, 2013, 2013: 486815.
[31] K. Sughimoto*, F.Y. Liang*, Y. Takahara, K. Mogi, K. Yamazaki, S. Takagi, H. Liu. Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system. Journal of Thoracic and Cardiovascular Surgery, 2013, 145(5):1367-72.
[32] Y. Li, Z.F. Yin, F.Y. Liang*. Error analysis on the assessment of cardiovascular function based on integration of clinical data and cardiovascular model. Chinese Journal of Biomedical Engineering, 2016(1): 47-54. (In Chinese)
[33] X. Han, X.S. Liu, F.Y. Liang*. The influence of outflow boundary conditions on blood flow patterns in an AcoA aneurysm. Journal of Hydrodynamics (Series A), 2015, 30(6): 692-700. (In Chinese)
[34] F.Y. Liang*, S. Takagi, R. Himeno, H. Liu. A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave, concerning its value in assessing arterial stiffness. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(2):141-157.
[35] F.Y. Liang*, S. Takagi, H. Liu. The influences of cardiovascular properties on suprasystolic brachial cuff wave studied by a simple arterial-tree model. Journal of Mechanics in Medicine and Biology, 2012, 12(3): 1-25.
[36] F.Y. Liang*, H. Liu, S. Takagi. The effects of brachial arterial stiffening on the accuracy of oscillometric blood pressure measurement: A computational model study. Journal of Biomechanical Science and Engineering, 2012, 7(1): 15-30.
[37] F.Y. Liang*, K. Fukasaku, S. Takagi, H. Liu. A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. BioMedical Engineering Online, 2011, 10:84.
[38] F.Y. Liang, S. Takagi*, R. Himeno, H. Liu. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & Biological Engineering & Computing, 2009, 47(7): 743-755.
[39] F.Y. Liang, S. Takagi, R. Himeno, H. Liu*. Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study, Journal of Biomechanics, 2009, 42(6): 692-704.
[40] F.Y. Liang, H. Taniguchi, H. Liu*. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function. Computers in Biology and Medicine, 2007, 37(5): 700-715.
[41] F.Y. Liang, R. Yamaguchi, H. Liu*. Fluid dynamics in normal and stenosed human renal arteries: An experimental and computational study. Journal of Biomechanical Science and Engineering, 2006, 1: 171-182.
[42] F.Y. Liang, H. Liu*. Simulation of hemodynamic responses to the Valsalva maneuver: An integrative computational model of the cardiovascular system and the autonomic nervous system. Journal of Physiological Sciences, 2006, 56(1): 45-65.
[43] F.Y. Liang*, H. Liu. A closed-loop lumped parameter computational model for human cardiovascular system. JSME International Journal (C), 2005, 48(4): 484-493.

授课:
(1)《工程学导论》面向本科生
(2)《工程力学实验》面向本科生
(3)《力学改变生活》(人体生物力学)面向本科生

本科生科研指导:
2015年至今,指导31人次完成李政道“䇹政基金”项目4项,毕业论文11篇,力学创新实验4项, PRP项目3项,大学生创新计划项目4项。

研究生培养:
博士生5名(在读)
硕士生11名(毕业7名,在读4名)

[1] 梁夫友,张絮洁. 一种末梢血管血流调节功能的无创检测系统. 发明专利,2020(专利号:ZL201710346227.5)
[2] 梁夫友,李逸,李力军. 基于振荡式血压计信号的中心动脉压检测系统. 发明专利,2015(专利号:ZL201310450330.6)
[3] Y Saito, R Himeno, S Takagi, F Liang. Vascular viscoelasticity evaluation device, vascular viscoelasticity evaluation method, and program,发明专利,2019(U.S. Patent No 10506932)。
[4] 涂圣贤,陈韵岱,田峰,梁夫友,陈树湛. 基于血压修正获取血流特征值的计算方法及装置. 发明专利(公开号:CN109009061A,实审中)
[5] 斋藤之良,姬野龙太郎,高木周,梁夫友. 血管粘弹性评价装置、血管粘弹性评价方法以及程序. 发明专利,2017(专利号:ZL201480018409.4)

(1) 2019.06 2019 Mimics Innovation Award Second Prize (Asia-Pacific)
(2) 2019.05 澳门新葡平台网址8883“钱学森杯”大学生课外学术科技作品竞赛 二等奖(指导教师)
(3) 2018.12 “知行杯”上海市大学生社会实践项目大赛 三等奖(指导教师)
(4) 2018.10 澳门新葡平台网址8883学生暑期社会实践 优秀指导教师
(5) 2018.10 澳门新葡平台网址8883学生暑期社会实践 一等奖 (指导教师)
(6) 2018.06 澳门新葡平台网址8883教书育人奖 集体二等奖(团队成员)
(7) 2018.08 “优秀论文奖”3项,第十二届全国生物力学学术会议(导师)
(8) 2017.09 上海市力学学会优秀青年学者 一等奖
(9) 2015-2018连续四年入选“中国高被引学者”榜单
(10) 2015.10 “优秀论文奖”1项,第十一届全国生物力学学术会议(导师)

版权所有 © 2023 澳门新葡平台网址8883 - 澳门新莆京游戏大厅 沪交ICP备05053   流量统计

Baidu
sogou